Skip to content Skip to sidebar Skip to footer

Recreating Css3 Transitions Cubic-bezier Curve

In CSS3 transitions, you can specify a timing function as 'cubic-bezier:(0.25, 0.3, 0.8, 1.0)' In that string, you are only specifying the XY for points P1 and P2 along the curve,

Solution 1:

Browsing through webkit-source a bit, the following code will give the correct T value for the implicit curve used in CSS3 transitions:

Visual demo (codepen.io)

Hope this helps someone!

function loop(){
    var t = (now - animationStartTime) / ( animationDuration*1000 );

    var curve = new UnitBezier(Bx, By, Cx, Cy);
    var t1 = curve.solve(t, UnitBezier.prototype.epsilon);
    var s1 = 1.0-t1;

    // Lerp using solved Tvar finalPosition.x = (startPosition.x * s1) + (endPosition.x * t1);
    var finalPosition.y = (startPosition.y * s1) + (endPosition.y * t1);
}


/**
* Solver for cubic bezier curve with implicit control points at (0,0) and (1.0, 1.0)
*/
function UnitBezier(p1x, p1y, p2x, p2y) {
    // pre-calculate the polynomial coefficients// First and last control points are implied to be (0,0) and (1.0, 1.0)this.cx = 3.0 * p1x;
    this.bx = 3.0 * (p2x - p1x) - this.cx;
    this.ax = 1.0 - this.cx -this.bx;

    this.cy = 3.0 * p1y;
    this.by = 3.0 * (p2y - p1y) - this.cy;
    this.ay = 1.0 - this.cy - this.by;
}

UnitBezier.prototype.epsilon = 1e-6; // Precision  
UnitBezier.prototype.sampleCurveX = function(t) {
    return ((this.ax * t + this.bx) * t + this.cx) * t;
}
UnitBezier.prototype.sampleCurveY = function (t) {
    return ((this.ay * t + this.by) * t + this.cy) * t;
}
UnitBezier.prototype.sampleCurveDerivativeX = function (t) {
    return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx;
}


UnitBezier.prototype.solveCurveX = function (x, epsilon) {
    var t0; 
    var t1;
    var t2;
    var x2;
    var d2;
    var i;

    // First try a few iterations of Newton's method -- normally very fast.for (t2 = x, i = 0; i < 8; i++) {
        x2 = this.sampleCurveX(t2) - x;
        if (Math.abs (x2) < epsilon)
            return t2;
        d2 = this.sampleCurveDerivativeX(t2);
        if (Math.abs(d2) < epsilon)
            break;
        t2 = t2 - x2 / d2;
    }

    // No solution found - use bi-section
    t0 = 0.0;
    t1 = 1.0;
    t2 = x;

    if (t2 < t0) return t0;
    if (t2 > t1) return t1;

    while (t0 < t1) {
        x2 = this.sampleCurveX(t2);
        if (Math.abs(x2 - x) < epsilon)
            return t2;
        if (x > x2) t0 = t2;
        else t1 = t2;

        t2 = (t1 - t0) * .5 + t0;
    }

    // Give upreturn t2;
}

// Find new T as a function of Y along curve X
UnitBezier.prototype.solve = function (x, epsilon) {
    returnthis.sampleCurveY( this.solveCurveX(x, epsilon) );
}

Solution 2:

You want to find the [0,1] value for any time value t [0,1]? There's a well-defined equation for a cubic bezier curve. Wikipedia page: http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves

So I don't have to type out their (probably LaTeX-formatted) formula, I copy-pasted the same formula from http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index2.html . This also has a C implementation which, on a quick read-through, should be easy to port to javascript:

B(u) = P0 * ( 1 - u )3 + P1 * 3 * u * ( 1 - u )2 + P2 * 3 * u2 * ( 1 - u ) + P3 * u3

What he's calling mu on that page is your time variable t.

Edit: If you don't want to do the math it looks like someone already wrote a small utility library in javascript to do basic bezier curve math: https://github.com/sporritt/jsBezier . pointOnCurve(curve, location) looks like just what you're asking for.

Solution 3:

I have try and search a lot of time and forms and definetly i have reached one simple and fast. The trick is get the cubic bezier function in this form: P(u) = u^3(c0 + 3c1 -3c2 +c3) + u^2(3c0 -6c1 +3c2) + u(-3c0 +3c1) + c0 where ci are the control points. The other part is search y from x with a binary search.

staticpublicclassCubicBezier {
    private BezierCubic bezier = new BezierCubic();
    publicCubicBezier(float x1, float y1, float x2, float y2) {
        bezier.set(new Vector3(0,0,0), new Vector3(x1,y1,0), new Vector3(x2,y2,0), new Vector3(1,1,1));
    }
    publicfloatget(float t) {
        float l=0, u=1, s=(u+l)*0.5f;
        float x = bezier.getValueX(s);
        while (Math.abs(t-x) > 0.0001f) {
            if (t > x)  { l = s; }
            else        { u = s; }
            s = (u+l)*0.5f;
            x = bezier.getValueX(s);
        }
        return bezier.getValueY(s);
    }
};

publicclassBezierCubic {
privatefloat[][] cpoints = newfloat[4][3];
privatefloat[][] polinom = newfloat[4][3];

publicBezierCubic() {}

publicvoidset(Vector3 c0, Vector3 c1, Vector3 c2, Vector3 c3) {
    setPoint(0, c0);
    setPoint(1, c1);
    setPoint(2, c2);
    setPoint(3, c3);
    generate();
}

publicfloatgetValueX(float u) {
    return getValue(0, u);
}

publicfloatgetValueY(float u) {
    return getValue(1, u);
}

publicfloatgetValueZ(float u) {
    return getValue(2, u);
}

privatefloatgetValue(int i, float u) {
    return ((polinom[0][i]*u + polinom[1][i])*u + polinom[2][i])*u + polinom[3][i];
}

privatevoidgenerate() {
    for (int i=0; i<3; i++) {
        float c0 = cpoints[0][i], c1 = cpoints[1][i], c2 = cpoints[2][i], c3 = cpoints[3][i];
        polinom[0][i] = c0 + 3*(c1 - c2) + c3;
        polinom[1][i] = 3*(c0 - 2*c1 + c2);
        polinom[2][i] = 3*(-c0 + c1);
        polinom[3][i] = c0;
    }
}

privatevoidsetPoint(int i, Vector3 v) {
    cpoints[i][0] = v.x;
    cpoints[i][1] = v.y;
    cpoints[i][2] = v.z;
}

}

Post a Comment for "Recreating Css3 Transitions Cubic-bezier Curve"